
Lecture 25:
Parallel Micropolygon Rendering

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements
▪ Please !ll out course and TA evaluations for us

▪ Exam 2 will be returned on Thursday

▪ Parallelism competition
- Thursday May 10th, 8:30-11:30 AM
- 5-7 minute presentations per group
- Judges:

- Matt Pharr (Intel)
- Ron Babich (NVIDIA Research)

- Will make your project pages available to Matt and Ron on Monday May 7th

 (CMU 15-418, Spring 2012)

What you should know
▪ Pay attention to how I describe the graphics algorithms in

this talk
- How do I describe the algorithm? (inputs, outputs)
- How do I describe the workload? (type of parallelism, locality, dependencies)
- What are the challenges in each of the subproblems?
- How were they overcome?

▪ Consider the end-to-end system
- Complex systems have many interesting interactions
- Component X’s behavior also makes life easier in component Y
- Changed algorithms to get better parallel behavior (obtain different results)

▪ That graphics is awesome

§Wide SIMD processing

§HW multi-threading

§Small traditional cache +
software-managed scratchpad

32-wide SIMD

48 interleaved
instruction streams

64 KB
scratchpad/L1

Needs data-parallelism: more
than 1500 elements processed
by core at once!

Reminder: GPU programmable core

NVIDIA Fermi Core

NVIDIA Fermi GPU
16 programmable cores: ~ 1.5 TFLOPS

+ !xed-function processing speci!c to graphics

Reminder: heterogeneous, multi-core GPU

Prog.
Core

Rasterizer

ZCull

Pixel Ops Pixel Ops

Texture Texture Texture

Texture Texture Texture

Work Distributor / Scheduler

Vtx Gen Prim Gen

Pixel Ops

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Prog.
Core

Credit: “UP” PS3 game (Heavy Iron/Disney)

Interactive graphics: low geometric detail

Credit: Pro Evolution Soccer 2010 (Konami)

Interactive graphics uses large triangles

[0-1] [1-5] [5-10] [10-20] [20-30] [30-40] [40-50] [50-60] [60-70] [70-80] [80-90] [90-100] [> 100]

30

20

10

0

Pe
rce

nt
ag

e o
f t

ot
al

 tr
ia

ng
le

s

Triangle area (pixels)

[source NVIDIA]

Highly detailed surfaces

Credit: Pixar Animation Studios, UP (2009)

Highly detailed surfaces

Credit: Pixar Animation Studios, UP (2009)

Micropolygons

(one pixel)

Assertion:
It is inefficient to render micropolygons

using the OpenGL/Direct3D graphics
pipeline implemented by GPUs.

Tessellation
(generating geometry)

Rasterization

Shading

Sources of inefficiency

Input base patches

Generate triangles on-demand in the pipeline

Micropolygon mesh

Missing: adaptive tessellation

Rasterization: computing covered pixels

Micropolygons too small for pixel-parallelism

Shading: computing surface color

TESSELLATION
Cannot adaptively tessellate a surface into micropolygons in parallel.

RASTERIZATION
Pixel-parallel coverage tests are inefficient.

SHADING
 Pipeline generates over 8x more shading work than needed.

Micropolygons pose three big problems

TESSELLATION:
Integrating parallel, adaptive tessellation into the pipeline

Overview: current solutions

§Lane-Carpenter patch algorithm
–High-quality, adapts well to surface complexity
–Hard to parallelize

§GPU tessellation
–Low quality, does not adapt well
–High performance (parallel, !xed-function)

[Lane 80]

[Moreton 01, Direct3D 11]

Input base patches
(example: bicubic patch)

Tessellation input: parametric patches

[Vlachos 01, Loop 08, Loop 09]

Goal: all triangles are approximately 1/2 pixel in area

(yields about one vertex per pixel)

Tessellation output: micropolygon mesh

Patch viewed from camera

Uniform patch tessellation is insufficient

Polygons too large: poor quality

Too many polygons: poor performance

Uniform partitioning of patch
(parametric domain)

u

v

 (CMU 15-418, Spring 2012)

Adaptive tessellation

Tessellation adapts to surface
properties and to camera view

Notice: larger polygons approximate $atter areas of surface well

Patch parametric domain Patch viewed from camera

Adaptive tessellation
(Lane-Carpenter patch algorithm)

Patch parametric domain Patch viewed from camera

Adaptive tessellation
(Lane-Carpenter patch algorithm)

Patch parametric domain Patch viewed from camera

Adaptive tessellation
(Lane-Carpenter patch algorithm)

Cracks!

2

1

2
1 (parametric domain)

Off-line status quo: “stitching” !xes cracks
Use a strip of polygons to connect adjacent sub-patches
Creates dependency: cannot process sub-patches in parallel

Parallel crack !xing

Adjacent regions agree on tessellation along edge
(in this case: 5 segments)

T(edge) = 5

7

2

53

Crack-free, uniform tessellation

[Moreton 01]

Input: edge tessellation constraints for a patch
Output: (almost) uniform mesh that meets these constraints

GPU tessellation

Uniform tessellation
(mesh generation)

Base patch data +
edge constraints

Mesh topology +
parametric location of vertices

Vertex Processing

!nal vertex positions

Crack-free, uniform patch tessellation
But no adaptive partitioning of patches!

[Direct3D 11]

Fixed-function
Programmable

Want: adaptive tessellation pipeline

Uniform tessellation
(mesh generation)

!nal vertex positions

Sub-patch data +
edge constraints

Adaptive partitioning

Base patch data

Fixed-function
Programmable

Mesh topology +
parametric location of vertices

Vertex Processing

Making Lane-Carpenter match edges

Making Lane-Carpenter match edges

4

3

Non-uniform

Making Lane-Carpenter match edges

5??

Non-uniform

Non-isoparametric splits

DiagSplit: adaptive, crack-free, sub-patch parallel

DiagSplit adapts as well as Lane-Carpenter

Lane-Carpenter DiagSplit

1/8 8x2 411/4 1/2
Too largeToo small

Triangle area relative to target (1/2 pixel triangles)

7% more vertices

[Fisher 09]

DiagSplit tessellation pipeline

Uniform tessellation
(mesh generation)

Vertex Processing

!nal vertex positions

DiagSplit

Base patch data

Compute Constraints

Surface Eval(u,v)

Fixed-function
Programmable

sub-patches + edge rates

sub-patch meshes

Divide and conquer
(not programmable, just provide edge function)

Irregular (data-ampli!cation)
Fixed-function implementations exist

data-parallel, application programmable

§DiagSplit: new algorithm designed to !t parallel system

–Output triangles not equivalent to Lane-Carpenter
(but very close)

§1.4x - 8.2x reduction in vertex count compared to uniform

§Heterogeneous implementation

–Programmable data-parallel component
(supports all parametric surfaces)

–Fixed-function components irregular, but parallelizable

Recap

[Fisher 09]

RASTERIZATION

Rasterization

Rasterization
Compute coverage using point-in-triangle tests

Rasterization
Compute coverage using point-in-triangle tests

Compute “possibly covered” pixels

Data-parallel sample tests

“all-in”

[Pineda 88]
[Fuchs 89]
[Greene 96]
[Seiler 08]

Micropolygons: most point-in-polygon tests fail

6% of candidate samples
inside triangle

61% of candidate samples
inside triangle

Low sample test efficiency!

For	
 each	
 MP

	
 Cull	
 polygon	
 if	
 back-­‐facing

	
 Compute	
 subpixel	
 bbox	
 of	
 MP

	
 For	
 each	
 sample	
 in	
 bbox
	
 Test	
 MP-­‐sample	
 coverage

Setup

Bound

Test

Micropolygon rasterization

Exec
0

Exec
1

Exec
2

Exec
3

Exec
4

Exec
5

Exec
6

Exec
7

Input micropolygons

Output fragments

Parallel micropolygon rasterization
Process multiple micropolygons simultaneously

MP parallel rast sustains high vector utilization

50

100 80%
74%

67% 62%

8 16 32 64
Vector width

(Number of polygons processed in parallel)

Ov
er

al
l U

til
iza

tio
n (

%
)

Micropolygon rasterization is simple, but expensive

§ 28% of tested samples fall within the triangle
Good: Up from 11% from a 16-sample-stamp algorithm
Bad: Still much lower than stamp-based algorithms on large triangles

§ No cheap “all-in” cases

§ Can’t amortize setup across many sample tests

+
-

1 billion micropolygons/sec at 16 samples per pixel

Estimated cost of GPU software implementation in CUDA:

(~15 million polygon scene at 60 Hz)

Several high-end NVIDIA GPUs

See [Brunhaver et al. HPG 2010]: A Hardware Implementation of Micropolygon Rasterization...
See [Lane et al. HPG 2011]: High-performance Software Rasterization on GPUs

Lesson learned:
Despite the speed of the programmable parts of a GPU,

I expect to see hardware rasterization around for awhile

SHADING:
Current GPUs shade small triangles inefficiently

Multi-sample locations

Sample coverage multiple times per pixel (for anti-aliased edges)

[Akeley 93]

Shading sample locations

Sample shading once per pixel

[Akeley 93]

Texture data is pre-!ltered to avoid aliasing

Pre-!ltered textureNo pre-!ltering
(aliased result)

(one shade per pixel is sufficient)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Recall this image?

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Texture space

Screen space Texture space

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Aliasing due to undersampling

Pre-!ltered textureNo pre-!ltering
(aliased result)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Aliasing due to undersampling

Pre-!ltered textureNo pre-!ltering
(aliased result)

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Computing amount of !ltering

Screen space Texture space

Take differences between texture coordinate values of neighboring fragments

Surface derivatives are needed for texture !ltering

du
dx

du
dy

Texture data

GPUs shade quad fragments (2x2 pixel blocks)

du
dx

du
dy

Texture data Quad fragment

(u00,v00)

(u10,v10) (u11,v11)

use differences between neighboring texture
coordinates to estimate derivatives

Shaded quad fragments

Final pixel values

Pixels at triangle boundaries are shaded multiple times
Shading computations per pixel

8 +
7
6
5
4
3
2
1

Pixels at triangle boundaries are shaded multiple times
Shading computations per pixel

8 +
7
6
5
4
3
2
1

Pixels at triangle boundaries are shaded multiple times
Shading computations per pixel

8 +
7
6
5
4
3
2
1

Small triangles result in extra shading
Shading computations per pixel

1 pixel area triangles10 pixel area triangles100 pixel area triangles

8 +
7
6
5
4
3
2
1

Goal:
Shade high-resolution meshes (not individual triangles)
approximately once per pixel

Solution:
Quad-fragment merging

GPU pipeline: triangle connectivity is known

Tess Rast Shade

quad fragments

Triangle connectivity
is known

1
42

3

Pipeline with quad-fragment merging

[Fatahalian et al. SIGGRAPH 2010]

Tess Rast ShadeMerge1
42

3

Pipeline with quad-fragment merging

[Fatahalian et al. SIGGRAPH 2010]

Tess Rast Shade

merge buffer

Merge

triangle mesh

1
42

3

Adjacent Tris: 3

Adjacent Tris: 2, 4

Adjacent Tris: 1, 3

Adjacent Tris: 2

How to merge quad fragments
Mesh triangles Rasterized quad fragments Merged quad fragment

1

42

3

2 4

41

When to merge quad fragments

Challenge: avoiding merges that introduce visual artifacts

Example: surface with a silhouette

anti-aliased silhouette

Final pixelsTriangle mesh

Naive merging results in aliasing
Final pixels

aliased result

Only merge quad-fragments from adjacent triangles in mesh

Triangle mesh

Implementation: the cost of merging is low

§Merging operations are cheap
– testing merging rules requires only bitwise operations
– each triangle carries a bit mask with adjacent triangle ids set

§Merge buffer is small
– 32 quad fragment merge buffer is very effective
– 90% of all possible merges

§ Expectation: quad-fragment merging can
be encapsulated in !xed-function hardware

Merging reduces total shaded quad fragments

2 4 8 10

2

12

4

6

8

10

Average triangle area (pixels)

Sh
ad

in
g c

om
pu

ta
tio

ns
 / p

ixe
l (

av
g)

No merging
Merging

14

1/2-pixel-area triangles: 8x reduction

60

Big Guy Scene

Extra shading occurs at merging window boundaries
1/2 pixel area triangles

8 +
7
6
5
4
3
2
1

Nearly identical visual quality
Quad-fragment merging Current GPU (no merging)

Nearly identical visual quality
Quad-fragment merging Current GPU (no merging)

Quad-fragment merging summary
§Reduces shading costs for high-res meshes
–shade surfaces (not triangles) at a density of once per pixel

§ Images not identical, but maintains high visual quality
–Requires triangle connectivity

§ Evolutionary: not a radical change to rasterization or shading
– isolates dynamic communication/control in merge step, maintains

data-parallel shading
–uses quad fragments for derivatives (still efficient for big triangles)
–compatible with edge anti-aliasing
–supports shading large triangles

SYSTEM-WIDE INTERACTIONS

A micropolygon rendering pipeline
DiagSplit adaptive tessellation:

Reduces rendered vertex count

Simpli!es micropolygon-parallel rasterization

Makes quad-fragment merging practical
(provides topology, sets triangle order)

Vertex Processing

Rasterization

Fragment Shading

Pixel Operations

DiagSplit

Vertex Generation
(uniform tess)

A micropolygon rendering pipeline
Rasterization:

Simple, but expensive: !xed-function hardware
highly desirable

Vertex Processing

Rasterization

Fragment Shading

Pixel Operations

DiagSplit

Vertex Generation
(uniform tess)

A micropolygon rendering pipeline
Quad-fragment merging:

Reduces shaded fragments by 8x

Not a radical change to existing rasterization and
shading systems

Output quality very similar to that of current GPUs

Vertex Processing

Rasterization

Fragment Shading

Pixel Operations

DiagSplit

Vertex Generation
(uniform tess)

Domain knowledge in graphics system design

Willingness to change algorithms to !t the system
- Natural for a !eld where output simply must “look good”

Unique approach to exploiting heterogeneity
- Isolate irregularity, synchronization in non-programmable regions
- Keep programmable stuff regular (and easy to code)
- Programmable “stuff” forms the inner loops! (admittedly odd)

1.

2.

Hot questions
What is the future of the real-time graphics pipeline?
(continue to evolve? or replace?)

How can graphics systems continue to leverage !xed-
function processing, but place it under software control?

 (CMU 15-418, Spring 2012)

Plug
▪ Real-time computer graphics presents some really

challenging parallel systems problems
▪ Ditto for computational photography and computer vision

